关于 XGBoost
XGBoost 是一个优化过的分布式梯度提升库,旨在实现高度 高效、灵活 和 可移植。它在 梯度提升 框架下实现了机器学习算法。XGBoost 提供了并行树提升(也称为 GBDT、GBM),可以快速准确地解决许多数据科学问题。相同的代码可以在主要的分布式环境(Hadoop、SGE、MPI)上运行,并能解决数十亿以上的样本问题。
这里有一些快速入门示例,请查阅文档。
Python
import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
# make prediction
preds = bst.predict(dtest)
R
library(xgboost)
# load data
data(agaricus.train, package = 'xgboost')
data(agaricus.test, package = 'xgboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1, nrounds = 2,
nthread = 2, objective = "binary:logistic")
# predict
pred <- predict(bst, test$data)
Julia
using XGBoost
# read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
# fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)
# predict
pred = predict(bst, test_X)
Scala
import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost
object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =
new DMatrix("/path/to/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")
}
}